

CSE 125 Discrete Mathematics

Nazia Sultana Chowdhury, Lecturer, Metropolitan University, Sylhet.

nazia.nishat1971@gmail.com

Predicates

- "x > 3"
- "x = y + 3"
- "x + y = z"

Predicates

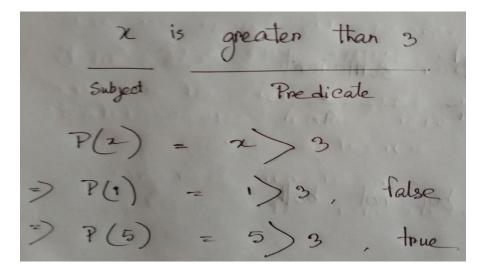
- Express the meaning of a wide range of statements in mathematics and computer science
- Permit us to reason and explore relationships between objects.

Predicate

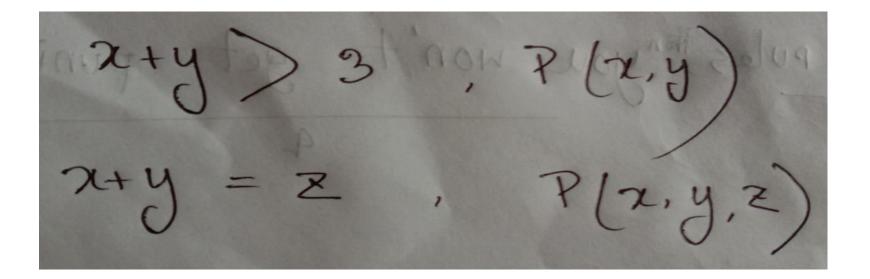
"x is greater than 3"

- The first part, the variable x, is the subject.
- The second part—the predicate.

Predicate



Predicates of Multiple Variables



Let P (x) denote the statement "x > 3." What are the truth values of P (4) and P (2)?

Solution: For P (4), the statement is "4 > 3," is true. For P (2), the statement is "2 > 3," is false.

Let Q(x, y) denote the statement "x = y + 3." What are the truth values of the propositions Q(1, 2) and Q(3, 0)?

Solution: For, Q(1, 2) the statement is "1 = 2 + 3," false. For Q(3, 0) the statement is "3 = 0 + 3," true

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- The area of logic that deals with predicates and quantifiers is called the predicate calculus.

Category of Quantifiers

- Universal quantification: A predicate is true for every element under consideration
- Existential quantification: There is one or more element under consideration for which the predicate is true.

Definition

- The universal quantification of P (x) is the statement "P (x) for all values of x in the domain."
- The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal quantifier. We read ∀xP (x) as "for all x P (x)" or "for every x P (x)."

Expressing Universal Quantifiers

- "for all"
- "for every"
- "all of"
- "for each"

Expressing Universal Quantifiers

- "given any"
- "for arbitrary"
- "for each"
- "for any"

Let P (x) be the statement "x + 1 > x." What is the truth value of the quantification $\forall x P(x)$, where the domain consists of all real numbers? **Solution:** Because P (x) is true for all real numbers x, the quantification $\forall x P(x)$ is true.

Let Q(x) = "x < 2." What is the truth value of the quantification $\forall xQ(x)$, where the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is, x = 3 is a counterexample for the statement $\forall xQ(x)$. Thus $\forall xQ(x)$ is false.

THE EXISTENTIAL QUANTIFIER

- The existential quantification of P (x) is the proposition "There exists an element x in the domain such that P (x)."
- ∃xP (x) us the notation for the existential quantification of P (x). ∃ is called the existential quantifier

Expressing Existential Qualifier

- "There is an x such that P (x),"
- "There is at least one x such that P (x),"
- "For some x P (x)."

Let P (x) denote the statement "x > 3." What is the truth value of the quantification $\exists xP(x)$, where the domain consists of all real numbers?

Solution: Because "x > 3" is sometimes true—for instance, when x = 4—the existential quantification of P (x), which is $\exists xP(x)$, is true

Let Q(x) denote the statement "x = x + 1." What is the truth value of the quantification $\exists xQ(x)$, where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x), which is $\exists xQ(x)$, is false

Summarization

TABLE 1 Quantifiers.				
Statement	When True?	When False?		
$ \forall x P(x) \\ \exists x P(x) $	P(x) is true for every <i>x</i> . There is an <i>x</i> for which $P(x)$ is true.	There is an <i>x</i> for which $P(x)$ is false. P(x) is false for every <i>x</i> .		

Logical Sentences Using Predicators

) Some student in the class has studied calculus.

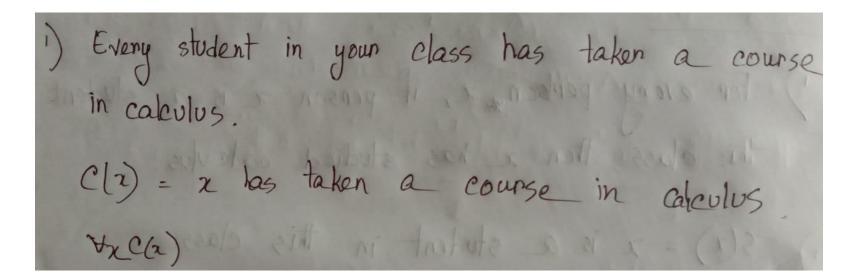
$$C(z) = z$$
 has studied calculus.
 $\exists z C(z)$
 \vdots Every student in the class has studied calculus
 $\forall z C(z)$

Logical Sentences Using Predicators

s(x) = x is a student in this class. c(i) = 2 has studied calculus. $\forall_2 (S(z) \longrightarrow C(z))$ For all z. if z is a student in this class, then z has studied et calculus.

Logical Sentences Using Predicators

- $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- $\neg \exists x Q(x) \equiv \forall x \neg Q(x)$



$$= \overline{\left(\forall x \ c(x) \right)}$$

= $\exists z \ c(x)$
There is a student in your class, who hasn't taken
a course in calculus.

There is a student in this class who has taken a course in calculus c(2) = 2 has taken a course in calculus In c(2) $= T(\exists_{\mathbf{x}} C(\mathbf{x}))$ = 42 - c(x) = Eveny student in this class has not taken calculus

De Morgan's Laws for Quantifiers

TABLE 2	De Morgan's	Laws for	Quantifiers.
---------	-------------	----------	--------------

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an <i>x</i> for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an <i>x</i> for which $P(x)$ is false.	P(x) is true for every x .

Nested Quantifiers

- $\forall x \exists y(x + y = 0)$
- $\forall x \forall y (x + y = y + x)$
- $\forall x \forall y \forall z(x + (y + z) = (x + y) + z)$
- $\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$

Translate into English the statement
 ∀x∀y((x > 0) ∧ (y < 0) → (xy < 0)),
 where the domain are real numbers.

Solution

- For every real number x and y, if x > 0 and y < 0, then xy < 0.
- "The product of a positive real number and a negative real number is always a negative real number."

"There is a real number y such that for every real number x, Q(x, y)."

Solution: $\forall x \exists y Q(x, y)$

Quantification of Two Variables

TABLE 1 Quantifications of Two Variables.				
Statement	When True?	When False?		
$ \begin{aligned} &\forall x \forall y P(x, y) \\ &\forall y \forall x P(x, y) \end{aligned} $	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.		
$\forall x \exists y P(x, y)$	For every <i>x</i> there is a <i>y</i> for which $P(x, y)$ is true.	There is an <i>x</i> such that $P(x, y)$ is false for every <i>y</i> .		
$\exists x \forall y P(x, y)$	There is an <i>x</i> for which $P(x, y)$ is true for every <i>y</i> .	For every <i>x</i> there is a <i>y</i> for which $P(x, y)$ is false.		
$ \exists x \exists y P(x, y) \exists y \exists x P(x, y) $	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .		